

Secure Workflows for HPC — a PoC

Harvey Richardson, HPE HPC/AI EMEA Research Lab September 5, 2022

HPC/AI EMEA Research Lab

Focused on collaborations, technical relationships and new technologies with a view to creating reusable PoCs and IP in Europe relevant to future products

Research Interests

- HPC, Cloud, AI, Quantum
- Data movement, analysis, and workflows
- Heterogeneous computing and novel accelerators
- Programming languages and models
- Compilers and mathematical optimisation
- Performance portability, security, and containerisation
- Energy efficiency and sustainability

Engagement Models

- Centres of Excellence
 - GW4
 - ARCHER2
 - LUMI (Secure Workloads in HPC)
- Advanced Collaboration Centres
- Value-add projects
- Joint-funded research projects
- Nationally/internationally funded research projects
- Ph.D. and Placements

Problem Statement

Requirements

"Users should be able to

- 1. run an application and
- access protected data on the HPC system that
- can only be executed on (a designated subset of) the compute nodes
- 4. (only once), and
- 5. can not be inspected in transport or in storage
- 6. With audit trail."

Interpretation

(First attempt)

- 1. containerized application
- 2. encrypted data
- 3. dedicated set of attested nodes with perallocation key for application
- 4. Per-job key
- Decryption of payload on attested (=trusted) compute nodes
- auditable key management, system attestation

Supporting Technologies

- Application packaging, signing and encryption
- Secrets Management Infrastructure
- Secure Identity Plane for platform and workload attestation
- Per-user/job encrypted file system

Secure Execution Enclave

Supporting Technologies

- Application packaging, signing and encryption
 - Container technologies (docker/Singularity)
- Secrets Management Infrastructure
 - HashiCorp Vault
- Secure Identity Plane for platform and workload attestation
 - SPIFFE/SPIRE
- Per user/job encrypted file system

- Secure Execution Enclave
 - Secure Boot
 - BIOS/ Processor and Memory security features
 - Network separation: VLANs, VNI, per-job encrypted segment?
 - Encrypted FS access ceph? Lustre?

PoC with CSC and AMD

Content

- Run Speech defect recognition code
 - Data decryption only on compute nodes
 - inside tmpfs, cleansed after run
 - SPIRE-attestation of resources
 - Providing trusted enclave
 - Per-job encryption key (one-time) of payload
 - Provides replay-protection
 - Per-user encryption key (personalized) for results

Status: First demo

```
seb@u176i026:/data/seb/secure workloads poc/hellotrunk> /opt/slurm/bin/srun -N1 ./3 run -s trunkfished my app sec.sif -c container key.pem
***trunkfish entry policy engine starts
***trunkfish entry policy engine ends
***secure computation finished and result stored into /trunkfish/output/my secret out***
***trunkfish exit policy engine starts
encrypting output... filelist
my secret out
encrypting output tarball...
[note]: use the following command later to decrypt
age -i data key.pem output.tar.enc
***trunkfish exit policy engine ends
       '/dev/shm/out-107/output.tar.enc' -> '/data/seb/output-107.tar.enc'
       '/dev/shm/out-107/output.tar.enc'
seb@u176i026:/data/seb/secure workloads poc/hellotrunk>
seb@u176i026:/data/seb/secure workloads poc/hellotrunk>
seb@u176i026:/data/seb/secure workloads poc/hellotrunk>
seb@u176i026:/data/seb/secure workloads poc/hellotrunk>
```

PoC Workflow

- Start with application container (in our case containing the Kaldi application)
- Generate encryption keys for container, input and output data
- Ship keys to vault on HPC system, set as not reusable and only accessible from one compute node
- Framework builds encrypted container: developer supplies entry point for execution
- Specific paths are used for use in container and for input and output data outside container
- Container entry point set which implements policies (in/out) and then executes developer entry point
- Framework builds container (OCI to encrypted SIF)
- Container shipped to HPC system
- Input data encrypted and sent to HPC system

(On HPC System)

- Application run by Slurm on the one node allowed, keys only available on that node.
- Output data encrypted (container teardown)

Next Steps / Question

Next steps

- Further develop Secure Enclave part
 - more secure hardware platform
- Attempt a distributed PoC with external party
 - Needs federation of user identity
 - Can user get credentials for access to remote data to your HPE resource (3 parties)?

Question

Is anyone interested in reaching out from their TRE to an external HPC resource

Acknowledgements

Groups involved:

- HPE HPC/AI EMEA Research Lab
- LUMI CoE
- CSC
- AMD

Thank you